Classification of consumption points in the supply area of HAMBURG WASSER
On behalf of HAMBURG WASSER, the project team is developing a new classification of types of consumptions points. So far, the consumption points have been classified as: private apartment, trade, industry etc. and are now being distinguished according to the trade branches as defined by the Federal Statistical Office. The aim is a more detailed recording of the customer base.
Research Approach
The over 700,000 consumption points in the supply area of HAMBURG WASSER have so far only roughly been distinguished according to so-called types of consumption points as for instance trade, industry, public institutions or private households. The scientists from ISOE are now re-classifying these consumption points according to a differentiated key that is adapted to the supply area. This key largely corresponds with the classification of trade branches introduced by the Federal Statistical Office in 2008. Since then, this key with its 20 main categories has been the basis of numerous economic statistics. Based on customer data, excerpts from the company data base of the chamber of commerce, and other business directories the scientists will determine the affiliation of a consumption point or a client to a particular trade branch. In the course of re-classification, the addresses of consumption points as well as their previous affiliation to household and non-household clients are checked and the quality of the re-classification is documented for further consultations with HAMBURG WASSER.
Methodology
The team of scientists will link the consumption points to the companies in the supply area using a semi-automatic allocation based on names and addresses. The accordingly programmed algorithms are determining the quality of allocation based on various characteristics in a coded form that allows further processing. Finally, for a consumption point with a commercial allocation the key for the trade branch of the allocated enterprise is taken over from the company data base. Other consumption points like for instance private households are classified separately.
Background
With the result of the re-classification of types of consumption points HAMBURG WASSER will in future be able to carry out a detailed analysis of its customer base which can also be used for the ongoing update of the water demand prognosis. For the water demand prognosis until 2045 for the supply area of HAMBURG WASSER the various consumer groups were for the first time defined according to the classification of trade branches of the Federal Statistical Office and for these classes a water demand prognosis was designed and carried out.
Duration
Project team
Topic
Related projects
- Assessment of the potential for the use of service water in Frankfurt am Main
- Application platform for an automated forecasting of the daily water demand in Hamburg
- AQUA-Hub India – Water Innovation Hubs and Smart Water Monitoring
- AquaticPollutantsTransNet – Knowledge transfer for the reduction of pollutants and pathogens in the water cycle
- Accompanying research for groundwater development at the site “Heiliger Born”
- BioFAVOR II – Low-tech recycling of faeces from decentralised sources
- CapTain Rain – Capture and retain heavy rainfalls in Jordan
- CuveWaters – Sustainable Water Management in Namibia
- Efficient Use of the Hessian Groundwater Fee
- Eliminating micropollutants in sewage plants
- EPoNa – Water Reuse in Northern Namibia
- Evaluation of the International Water Stewardship Program (IWaSP)
- gwTriade – Integrative monitoring of groundwater quality
- HypoWave – New Pathways Towards Wastewater Re-Use in Agriculture
- HypoWave+ – Implementation of a hydroponic system for sustainable water reuse in agriculture
- INTAFERE – Integrated Analysis of Organic Impurities in Rivers
- IWRM in Isfahan – Sustainable Water Management in Iran
- IntenKS – Improving sewage sludge treatment in China for energetic and material utilisation
- INTERESS-I – Integrated strategies to strengthen urban blue-green infrastructures
- Competence Atlas Water – Water Technologies and Water Management in Hesse
- KREIS – Innovative municipal wastewater system in ‘Jenfelder Au’
- Guiding principle IWRM – Water resources management for the metropolitan region of Rhine-Main
- LiveSewer – KI-basiertes Abwassermonitoring
- Privatisation and Competition in Drinking Water Supply in Germany
- Master Plan “Future-proof Drinking Water Supply in Saarland 2040”
- MORE STEP – Mobility at Risk: Sustaining the Mongolian Steppe Ecosystem (Phase II)
- MULTI-ReUse – Modular treatment system for water reuse
- Sustainability Performance in the Water Supply
- NaCoSi – Sustainability controlling of the domestic water management
- netWORKS – Transformations in Network Related Infrastructure Sectors
- netWORKS 2 – Transformation Management for a Sustainable Water Infrastructure
- netWORKS 3 – Sustainable concepts for the municipal water sector
- netWORKS 4 – Resilient networks: how urban supply systems contribute to climate justice
- netWORKS 4 – Resilient networks: Contributions of urban supply systems to climate justice (follow-up project)
- New perspectives for the ecological restoration of streams and rivers
- NiddaMan – Sustainable Water Resources Management in the Nidda Catchment Area
- P-Net – Regional network for resource-efficient phosphorus recycling and management
- PLASTRAT – Reduction of plastic discharges in lakes and running waters
- PlastX – Microplastics in bodies of running water
- PlastX – Plastic waste in seas and oceans
- Privatisation in the Water Sector
- Stormwater Infiltration in Wiesbaden
- Regional Sustainability in Water and Land Use
- regulate – Sustainable Groundwater Management in Europe
- SASSCAL – Research Infrastructure in Africa
- SASSCAL – Water-related vulnerabilities and risk in Southern Africa
- SAUBER+ Innovative concepts for wastewater from public health sector facilities
- SCIP Plastics – Strengthening Waste Prevention in Khulna and Reducing Marine Plastic Pollution
- Semizentral – Infrastructure systems for cities of the future experiencing rapid growth
- Smart Water Future India: Intelligent Water Management for India’s Cities
- start – Management Strategies for Pharmaceuticals in Drinking Water
- start2 – Management Strategies for Hormonally Active Agrochemicals
- Material flows of environmentally relevant chemical substances: product line controlling
- Structural concept for Trinkwasserversorgung Magdeburg
- TransRisk – Pollutants as a risk to the water cycle
- TRAPA India – Transition pathways for solving urban wastewater problems in Indian cities
- Daily drinking water demand – forecast model for Hamburg
- Environmental Risks and Pharmaceuticals: The Key Role of Pharmacies
- WaReNam – Mehrskalige Wasserwiederverwendungsstrategie für Namibia
- Water 2050 – Sustainable Innovations for Water Management
- Water demand forecast 2030 (base year 2005) for Hamburg
- Water demand forecast 2045 (base year 2011) for Hamburg
- Water demand forecast 2050 (base year 2017) for Hamburg
- Water demand forecast 2050 (base year 2019) for the WBV Harburg
- Water demand forecast 2050 (base year 2020) for Hamburg
- Water Cycle an Urban-Ecological Development
- Proxies and Scenarios for the Development of Water Demand
- Weschnitz Dialog: Communication and participation in the management of restoration measures along the river Weschnitz
- Scientific accompanying of the 2021 survey on water consumption in Hamburg
- Scientific support for the Frankfurt project “Smart Water Management”
- The current and future state of our water resources