HypoWave+ – Implementation of a hydroponic system for sustainable water reuse in agriculture
Regional competitions over the resource water are not uncommon. Due to climate change, urbanization and pollution of water resources, these conflicts of use could intensify in the coming decades. Even in Germany that is rich in water, conflicts of use are becoming more frequent. This is why new concepts and processes for water reuse are needed. In the BMBF research project HypoWave, hydroponic plant production using water reuse was piloted for the first time between 2016 and 2020. In the HypoWave+ project, the research network in the Gifhorn region is supporting the large-scale implementation of a hydroponic system using water reuse. On a cultivation area of one hectare, approximately 600–700 tons of vegetables are to be produced annually.
Research approach
The aim of the transdisciplinary research network is to establish a new form of regional vegetable production. Based on the results of the HypoWave research project, farmers in the Gifhorn region decided to establish a company that produces hydroponically grown vegetables. HypoWave+ accompanies this project scientifically and investigates open questions in the areas of water treatment, vegetable production, intelligent process control, quality management and institutional arrangements. The aim is to further develop the marketability of hydroponically produced vegetables by means of environmentally friendly water recycling with the aim of applying it at other locations as well.
Within the framework of HypoWave+, the ISOE team is particularly concerned with integrated quality management which stands for a holistic view of the process that begins with water treatment and ends with the sale of the produced vegetables. In addition, ISOE is working on institutional issues in the context of implementation and is working together with local stakeholders on questions of cooperation and acceptance. The quality of the process chain is another important topic in this context. Furthermore, by taking over the project coordination, ISOE is responsible for the quality of the transdisciplinary work within the project team as well as for knowledge transfer.
Background
Climate change, urbanization and the pollution of conventional water resources will in the coming decades lead to rising regional competition over the use of the increasingly scarce water resources. At the same time, there is a growing demand for regional vegetables that are produced in a resource-efficient way. For irrigation in agriculture, environmentally friendly water recycling can serve to increase the water supply. So far, there has been no large-scale implementation of the piloted HypoWave concept. This task is now being addressed in the follow-up project HypoWave+.
Project partners
- Institute for Sanitary and Environmental Engineering, Technische Universität Braunschweig
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB
- University of Hohenheim
- IseBauern GmbH & Co. KG
- Wasserverband Gifhorn
- Abwasserverband Braunschweig
- aquatune GmbH, a Xylem brand
- Ankermann GmbH & Co. KG
- Huber SE
- INTEGAR – Institut für Technologien im Gartenbau GmbH
Funding
The Federal Ministry of Education and Research (BMBF) is funding the project “HypoWave+ – Implementation of a Hydroponic System as a Sustainable Innovation for Resource-Efficient Agricultural Water Reuse” within the funding measure “Water Technologies: Water Reuse” as part of the federal research program on water “Wasser: N”. Wasser: N contributes to the BMBF “Research for Sustainability” (FONA) Strategy.
Publications
Winker, Martina/Diego Eufracio Lucio/Heide Kerber (2024): Wasserwiederverwendung in der spanischen Landwirtschaft. Wasser und Abfall 26 (3), 36-41
Fischer, Michaela/Thomas Dockhorn/Martin Zimmermann/Martina Winker (2021): Water reuse in hydroponic plant production: a new facet in agricultural food production. Book of Abstracts. 4th IWA Resource Recovery Conference - IWARR2021 Turkey (Virtual), 5.9-8.9.2021, 168-170
Duration
Contact person
Project team
Project Links
Related projects
- Assessment of the potential for the use of service water in Frankfurt am Main
- Application platform for an automated forecasting of the daily water demand in Hamburg
- AQUA-Hub India – Water Innovation Hubs and Smart Water Monitoring
- AquaticPollutantsTransNet – Knowledge transfer for the reduction of pollutants and pathogens in the water cycle
- Accompanying research for groundwater development at the site “Heiliger Born”
- BioFAVOR II – Low-tech recycling of faeces from decentralised sources
- CapTain Rain – Capture and retain heavy rainfalls in Jordan
- CuveWaters – Sustainable Water Management in Namibia
- Efficient Use of the Hessian Groundwater Fee
- Eliminating micropollutants in sewage plants
- EPoNa – Water Reuse in Northern Namibia
- Evaluation of the International Water Stewardship Program (IWaSP)
- gwTriade – Integrative monitoring of groundwater quality
- HypoWave – New Pathways Towards Wastewater Re-Use in Agriculture
- INTAFERE – Integrated Analysis of Organic Impurities in Rivers
- IWRM in Isfahan – Sustainable Water Management in Iran
- IntenKS – Improving sewage sludge treatment in China for energetic and material utilisation
- INTERESS-I – Integrated strategies to strengthen urban blue-green infrastructures
- Classification of consumption points in the supply area of HAMBURG WASSER
- Competence Atlas Water – Water Technologies and Water Management in Hesse
- KREIS – Innovative municipal wastewater system in ‘Jenfelder Au’
- Guiding principle IWRM – Water resources management for the metropolitan region of Rhine-Main
- LiveSewer – KI-basiertes Abwassermonitoring
- Privatisation and Competition in Drinking Water Supply in Germany
- Master Plan “Future-proof Drinking Water Supply in Saarland 2040”
- MORE STEP – Mobility at Risk: Sustaining the Mongolian Steppe Ecosystem (Phase II)
- MULTI-ReUse – Modular treatment system for water reuse
- Sustainability Performance in the Water Supply
- NaCoSi – Sustainability controlling of the domestic water management
- netWORKS – Transformations in Network Related Infrastructure Sectors
- netWORKS 2 – Transformation Management for a Sustainable Water Infrastructure
- netWORKS 3 – Sustainable concepts for the municipal water sector
- netWORKS 4 – Resilient networks: how urban supply systems contribute to climate justice
- netWORKS 4 – Resilient networks: Contributions of urban supply systems to climate justice (follow-up project)
- New perspectives for the ecological restoration of streams and rivers
- NiddaMan – Sustainable Water Resources Management in the Nidda Catchment Area
- P-Net – Regional network for resource-efficient phosphorus recycling and management
- PLASTRAT – Reduction of plastic discharges in lakes and running waters
- PlastX – Microplastics in bodies of running water
- PlastX – Plastic waste in seas and oceans
- Privatisation in the Water Sector
- Stormwater Infiltration in Wiesbaden
- Regional Sustainability in Water and Land Use
- regulate – Sustainable Groundwater Management in Europe
- SASSCAL – Research Infrastructure in Africa
- SASSCAL – Water-related vulnerabilities and risk in Southern Africa
- SAUBER+ Innovative concepts for wastewater from public health sector facilities
- SCIP Plastics – Strengthening Waste Prevention in Khulna and Reducing Marine Plastic Pollution
- Semizentral – Infrastructure systems for cities of the future experiencing rapid growth
- Smart Water Future India: Intelligent Water Management for India’s Cities
- start – Management Strategies for Pharmaceuticals in Drinking Water
- start2 – Management Strategies for Hormonally Active Agrochemicals
- Material flows of environmentally relevant chemical substances: product line controlling
- Structural concept for Trinkwasserversorgung Magdeburg
- TransRisk – Pollutants as a risk to the water cycle
- TRAPA India – Transition pathways for solving urban wastewater problems in Indian cities
- Daily drinking water demand – forecast model for Hamburg
- Environmental Risks and Pharmaceuticals: The Key Role of Pharmacies
- Water 2050 – Sustainable Innovations for Water Management
- Water demand forecast 2030 (base year 2005) for Hamburg
- Water demand forecast 2045 (base year 2011) for Hamburg
- Water demand forecast 2050 (base year 2017) for Hamburg
- Water demand forecast 2050 (base year 2019) for the WBV Harburg
- Water demand forecast 2050 (base year 2020) for Hamburg
- Water Cycle an Urban-Ecological Development
- Proxies and Scenarios for the Development of Water Demand
- Weschnitz Dialog: Communication and participation in the management of restoration measures along the river Weschnitz
- Scientific accompanying of the 2021 survey on water consumption in Hamburg
- Wissenschaftliche Begleitung des Projekts „Smartes Wassermanagement“ in Frankfurt
- The current and future state of our water resources