The current and future state of our water resources
The project team evaluates the current state of scientific knowledge regarding the quantitative and qualitative status of water resources on a global, European and German national level. The aim is to assess possible future changes in the state of water resources and thus support the development of related economic and innovative policy measures.
Research approach
The aim of the project is to assess the current state of water resources and to examine their availability, quality as well as the corresponding demand. The status is analyzed globally as well as regionally both on a European and German level. Observational data from various platforms such as FAO Aquastat and EUROSTAT and model data from the “Inter-Sectoral Impact Model Intercomparison Project” platform are used with the aim to analyze past and future trends. The goal is to adequately depict the uncertainty in the observation and model data using an ensemble approach (i.e. the use of a broad basis of different models). This provides the project team with an extensive knowledge base and offers the chance to assess current trends and possible future changes against the backdrop of uncertainty regarding the available data.
Background
Worldwide, water resources are getting increasingly under pressure. On the one hand, climate change is intensifying the global hydrological cycle, making water extremes such as droughts and floods more frequent and more pronounced. On the other hand, social patterns of water use are changing. As a result, conflicts over water resources are predicted to increase. Against this backdrop, it is important to take stock of the state of our water resources at both a global and regional level in order to explore ways of adapting to the coming changes. The Expertenkommission Forschung und Innovation (EFI) would like to use the results of this project to advise the Federal Government with regard to economic and innovative policy measures.
Client
The project “Current Inventory and Forecast for Freshwater Resources” was commissioned by the “Expertenkommission Forschung und Innovation” (EFI) as part of the priority study “Innovations in Water Management”.
Duration
Contact person
Project team
Topic
Project Links
Related projects
- Assessment of the potential for the use of service water in Frankfurt am Main
- Application platform for an automated forecasting of the daily water demand in Hamburg
- AQUA-Hub India – Water Innovation Hubs and Smart Water Monitoring
- AquaticPollutantsTransNet – Knowledge transfer for the reduction of pollutants and pathogens in the water cycle
- Accompanying research for groundwater development at the site “Heiliger Born”
- BioFAVOR II – Low-tech recycling of faeces from decentralised sources
- CapTain Rain – Capture and retain heavy rainfalls in Jordan
- CuveWaters – Sustainable Water Management in Namibia
- Efficient Use of the Hessian Groundwater Fee
- Eliminating micropollutants in sewage plants
- EPoNa – Water Reuse in Northern Namibia
- Evaluation of the International Water Stewardship Program (IWaSP)
- gwTriade – Integrative monitoring of groundwater quality
- HypoWave – New Pathways Towards Wastewater Re-Use in Agriculture
- HypoWave+ – Implementation of a hydroponic system for sustainable water reuse in agriculture
- INTAFERE – Integrated Analysis of Organic Impurities in Rivers
- IWRM in Isfahan – Sustainable Water Management in Iran
- IntenKS – Improving sewage sludge treatment in China for energetic and material utilisation
- INTERESS-I – Integrated strategies to strengthen urban blue-green infrastructures
- Classification of consumption points in the supply area of HAMBURG WASSER
- Competence Atlas Water – Water Technologies and Water Management in Hesse
- KREIS – Innovative municipal wastewater system in ‘Jenfelder Au’
- Guiding principle IWRM – Water resources management for the metropolitan region of Rhine-Main
- LiveSewer – KI-basiertes Abwassermonitoring
- Privatisation and Competition in Drinking Water Supply in Germany
- Master Plan “Future-proof Drinking Water Supply in Saarland 2040”
- MORE STEP – Mobility at Risk: Sustaining the Mongolian Steppe Ecosystem (Phase II)
- MULTI-ReUse – Modular treatment system for water reuse
- Sustainability Performance in the Water Supply
- NaCoSi – Sustainability controlling of the domestic water management
- netWORKS – Transformations in Network Related Infrastructure Sectors
- netWORKS 2 – Transformation Management for a Sustainable Water Infrastructure
- netWORKS 3 – Sustainable concepts for the municipal water sector
- netWORKS 4 – Resilient networks: how urban supply systems contribute to climate justice
- netWORKS 4 – Resilient networks: Contributions of urban supply systems to climate justice (follow-up project)
- New perspectives for the ecological restoration of streams and rivers
- NiddaMan – Sustainable Water Resources Management in the Nidda Catchment Area
- P-Net – Regional network for resource-efficient phosphorus recycling and management
- PLASTRAT – Reduction of plastic discharges in lakes and running waters
- PlastX – Microplastics in bodies of running water
- PlastX – Plastic waste in seas and oceans
- Privatisation in the Water Sector
- Stormwater Infiltration in Wiesbaden
- Regional Sustainability in Water and Land Use
- regulate – Sustainable Groundwater Management in Europe
- SASSCAL – Research Infrastructure in Africa
- SASSCAL – Water-related vulnerabilities and risk in Southern Africa
- SAUBER+ Innovative concepts for wastewater from public health sector facilities
- SCIP Plastics – Strengthening Waste Prevention in Khulna and Reducing Marine Plastic Pollution
- Semizentral – Infrastructure systems for cities of the future experiencing rapid growth
- Smart Water Future India: Intelligent Water Management for India’s Cities
- start – Management Strategies for Pharmaceuticals in Drinking Water
- start2 – Management Strategies for Hormonally Active Agrochemicals
- Material flows of environmentally relevant chemical substances: product line controlling
- Structural concept for Trinkwasserversorgung Magdeburg
- TransRisk – Pollutants as a risk to the water cycle
- TRAPA India – Transition pathways for solving urban wastewater problems in Indian cities
- Daily drinking water demand – forecast model for Hamburg
- Environmental Risks and Pharmaceuticals: The Key Role of Pharmacies
- Water 2050 – Sustainable Innovations for Water Management
- Water demand forecast 2030 (base year 2005) for Hamburg
- Water demand forecast 2045 (base year 2011) for Hamburg
- Water demand forecast 2050 (base year 2017) for Hamburg
- Water demand forecast 2050 (base year 2019) for the WBV Harburg
- Water demand forecast 2050 (base year 2020) for Hamburg
- Water Cycle an Urban-Ecological Development
- Proxies and Scenarios for the Development of Water Demand
- Weschnitz Dialog: Communication and participation in the management of restoration measures along the river Weschnitz
- Scientific accompanying of the 2021 survey on water consumption in Hamburg
- Wissenschaftliche Begleitung des Projekts „Smartes Wassermanagement“ in Frankfurt